Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Res Pract Thromb Haemost ; 4(5): 774-788, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-2277063

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.

2.
Curr Opin Hematol ; 29(5): 259-265, 2022 09 01.
Article in English | MEDLINE | ID: covidwho-1948583

ABSTRACT

PURPOSE OF REVIEW: COVID-19 remains a major source of concern, particularly as new variants emerge and with recognition that patients may suffer long-term effects. Mechanisms underlying SARS-CoV-2 mediated organ damage and the associated vascular endotheliopathy remain poorly understood, hindering new drug development. Here, we highlight selected key concepts of how the complement system, a major component of innate immunity that is dysregulated in COVID-19, participates in the thromboinflammatory response and drives the vascular endotheliopathy. RECENT FINDINGS: Recent studies have revealed mechanisms by which complement is activated directly by SARS-CoV-2, and how the system interfaces with other innate thromboinflammatory cellular and proteolytic pathways involving platelets, neutrophils, neutrophil extracellular traps and the coagulation and kallikrein-kinin systems. With this new information, multiple potential sites for therapeutic intervention are being uncovered and evaluated in the clinic. SUMMARY: Infections with SARS-CoV-2 cause damage to the lung alveoli and microvascular endothelium via a process referred to as thromboinflammation. Although not alone in being dysregulated, complement is an early player, prominent in promoting the endotheliopathy and consequential organ damage, either directly and/or via the system's complex interplay with other cellular, molecular and biochemical pathways. Delineating these critical interactions is revealing novel and promising strategies for therapeutic intervention.


Subject(s)
COVID-19 , Extracellular Traps , Thrombosis , Complement System Proteins , Humans , Inflammation , SARS-CoV-2 , Thrombosis/etiology
3.
Med Microbiol Immunol ; 211(1): 37-48, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1626115

ABSTRACT

Mechanisms underlying the SARS-CoV-2-triggered hyperacute thrombo-inflammatory response that causes multi-organ damage in coronavirus disease 2019 (COVID-19) are poorly understood. Several lines of evidence implicate overactivation of complement. To delineate the involvement of complement in COVID-19, we prospectively studied 25 ICU-hospitalized patients for up to 21 days. Complement biomarkers in patient sera and healthy controls were quantified by enzyme-linked immunosorbent assays. Correlations with respiratory function and mortality were analyzed. Activation of complement via the classical/lectin pathways was variably increased. Strikingly, all patients had increased activation of the alternative pathway (AP) with elevated levels of activation fragments, Ba and Bb. This was associated with a reduction of the AP negative regulator, factor (F) H. Correspondingly, terminal pathway biomarkers of complement activation, C5a and sC5b-9, were significantly elevated in all COVID-19 patient sera. C5a and AP constituents Ba and Bb, were significantly associated with hypoxemia. Ba and FD at the time of ICU admission were strong independent predictors of mortality in the following 30 days. Levels of all complement activation markers were sustained throughout the patients' ICU stays, contrasting with the varying serum levels of IL-6, C-reactive protein, and ferritin. Severely ill COVID-19 patients have increased and persistent activation of complement, mediated strongly via the AP. Complement activation biomarkers may be valuable measures of severity of lung disease and the risk of mortality. Large-scale studies will reveal the relevance of these findings to thrombo-inflammation in acute and post-acute COVID-19.


Subject(s)
COVID-19 , Biomarkers , Complement Activation , Hospital Mortality , Humans , Hypoxia , SARS-CoV-2
4.
J Thromb Haemost ; 18(11): 2812-2822, 2020 11.
Article in English | MEDLINE | ID: covidwho-697181

ABSTRACT

In December 2019, the world was introduced to a new betacoronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for its propensity to cause rapidly progressive lung damage, resulting in high death rates. As fast as the virus spread, it became evident that the novel coronavirus causes a multisystem disease (COVID-19) that may involve multiple organs and has a high risk of thrombosis associated with striking elevations in pro-inflammatory cytokines, D-dimer, and fibrinogen, but without disseminated intravascular coagulation. Postmortem studies have confirmed the high incidence of venous thromboembolism, but also notably revealed diffuse microvascular thrombi with endothelial swelling, consistent with a thrombotic microangiopathy, and inter-alveolar endothelial deposits of complement activation fragments. The clinicopathologic presentation of COVID-19 thus parallels that of other thrombotic diseases, such as atypical hemolytic uremic syndrome (aHUS), that are caused by dysregulation of the complement system. This raises the specter that many of the thrombotic complications arising from SARS-CoV-2 infections may be triggered and/or exacerbated by excess complement activation. This is of major potential clinical relevance, as currently available anti-complement therapies that are highly effective in protecting against thrombosis in aHUS, could be efficacious in COVID-19. In this review, we provide mounting evidence for complement participating in the pathophysiology underlying the thrombotic diathesis associated with pathogenic coronaviruses, including SARS-CoV-2. Based on current knowledge of complement, coagulation and the virus, we suggest lines of study to identify novel therapeutic targets and the rationale for clinical trials with currently available anti-complement agents for COVID-19.


Subject(s)
Blood Coagulation , COVID-19/immunology , Complement Activation , Complement System Proteins/immunology , SARS-CoV-2/immunology , Thrombosis/immunology , Animals , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , COVID-19/blood , COVID-19/virology , Complement Activation/drug effects , Complement Inactivating Agents/therapeutic use , Host-Pathogen Interactions , Humans , Thrombosis/blood , Thrombosis/prevention & control , Thrombosis/virology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL